Ground-State Cooling of a Mechanical Oscillator by Interference in Andreev Reflection.

نویسندگان

  • P Stadler
  • W Belzig
  • G Rastelli
چکیده

We study the ground-state cooling of a mechanical oscillator linearly coupled to the charge of a quantum dot inserted between a normal metal and a superconducting contact. Such a system can be realized, e.g., by a suspended carbon nanotube quantum dot with a capacitive coupling to a gate contact. Focusing on the subgap transport regime, we analyze the inelastic Andreev reflections which drive the resonator to a nonequilibrium state. For small coupling, we obtain that vibration-assisted reflections can occur through two distinct interference paths. The interference determines the ratio between the rates of absorption and emission of vibrational energy quanta. We show that ground-state cooling of the mechanical oscillator can be achieved for many of the oscillator's modes simultaneously or for single modes selectively, depending on the experimentally tunable coupling to the superconductor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge-vibration interaction effects in normal-superconductor quantum dots

We study the quantum transport and the nonequilibrium vibrational states of a quantum dot embedded between a normal-conducting and a superconducting lead with the charge on the quantum dot linearly coupled to a harmonic oscillator of frequency ω. To the leading order in the charge-vibration interaction, we calculate the current and the nonequilibrium phonon occupation by the Keldsyh Green’s fun...

متن کامل

Quantum theory of optomechanical cooling

We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching 10, and they may soon go to the ground state of mechanical motio...

متن کامل

nt - p h / 06 03 25 0 v 1 27 M ar 2 00 6 Ground state cooling in a bad cavity

We study the mechanical effects of light on an atom trapped in a harmonic potential when an atomic dipole transition is driven by a laser and it is strongly coupled to a mode of an optical resonator. We investigate the cooling dynamics in the bad cavity limit, focussing on the case in which the effective transition linewidth is smaller than the trap frequency, hence when sideband cooling could ...

متن کامل

Theory of ground state cooling of a mechanical oscillator using dynamical backaction.

A quantum theory of cooling of a mechanical oscillator by radiation pressure-induced dynamical backaction is developed, which is analogous to sideband cooling of trapped ions. We find that final occupancies well below unity can be attained when the mechanical oscillation frequency is larger than the optical cavity linewidth. It is shown that the final average occupancy can be retrieved directly...

متن کامل

Quantum interference due to crossed Andreev reflection in a d-wave superconductor with two nano-contacts

The crossed Andreev reflection in a hybrid nanostructure consisting of a d-wave superconductor and two quantum wires is theoretically studied. When the (110) oriented surface of the superconductor is in contact with the wires parallel and placed close to each other, the Andreev bound state is formed by the crossed Andreev reflection. The conductance has two resonance peaks well below the gap st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 117 19  شماره 

صفحات  -

تاریخ انتشار 2016